
05 - More Files, Chaining Commands, Piping
and Redirection
CS 2043: Unix Tools and Scripting, Spring 2017 [1]

Stephen McDowell
February 3rd, 2017

Cornell University

Table of contents

1. Recap on Permissions

2. File Compression

3. Assorted Commands

4. Chaining Commands

1

Some Logistics

• OH have changed, refer to the syllabus page
• WHY IS MY VM RUNNING SO SLOW?!

• If you started following step 5 on Getting Started...
• ...you have to do BOTH steps!
• Reminder: tailor the configurations to be your own.

• Assignments and release dates.

2

https://cs2043-sp17.github.io/syllabus.html
https://cs2043-sp17.github.io/getting_started.html
https://cs2043-sp17.github.io/configurations.html

Recap on Permissions

The Octal Version of chmod

• Previously, I linked you to [2] for a good explanation.
• For the formula hungry, you can represent r, w, and x as binary
variables (where 0 is off, and 1 is on). Then the formula for the
modes is

r · 22 + w · 21 + x · 20

Examples
chmod 755: rwxr-xr-x

chmod 777: rwxrwxrwx

chmod 600: rw-------

• If that makes less sense to you, feel free to ignore it.

3

Super Confused...

• Elevate your workflow:
Superuser Do
sudo <command>

- Execute <command> as the super user.

- The regular user (e.g. student) is executing the sudo command,
not the root.

- You enter your user password.

- You can only execute sudo if you are an ”administrator”*.

• On the course VMs the student user originally had the
password student, so that is what you would type if you were
executing sudo.

• On your personal Mac (or native Linux install), you would be
typing whatever your password is to login to the computer.

4

Super Confused...

• If you know the root password, then you can become root
using su directly.

Switch User
su <user_name>

- Switches to user user_name.

- The password you enter is the password for user_name.

- If no username is specified, root is implied.

• The commands sudo su root and sudo su are equivalent:

• Since you typed sudo first, that is why you type the user
password.

• If you just execute su directly, then you have to type the root
password. 5

Default Permissions

• When you create files during a particular session, the mode
you are running in determines what the permissions will be.

User mask
umask <mode>

- Remove mode from the file’s permissions.

- Similar syntax to chmod:
- umask 077: full access to the user, no access to anybody else.
- umask g+w: enables group write permissions.

- umask -S: display the current mask.

• Changing the umask only applies for the remainder of the
session (e.g. until you close the terminal window you were
writing this in).

• If this has meaning, it is just a bit mask with 0o777. 6

File Compression

Making Archives: Zip

Zip
zip <name_of_archive> <files_to_include>
- Note I said files.
- E.g. zip files.zip a.txt b.txt c.txt
- These will extract to a.txt, b.txt, and c.txt in the current
directory.

- To do folders, you need recursion.
- zip -r folder.zip my_files/
- This will extract to a folder named my_files, with whatever
was inside of it in tact.

Unzip
unzip <archive_name>

Note: The original files DO stay in tact. 7

Making Archives: Gzip

Gzip
gzip <files_to_compress>
- Less time to compress, larger file: --fast
- More time to compress, smaller file: --best
- Read the man page, lots of options.

Gunzip
gunzip <archive_name>

Notes:

• By default, replaces the original files!
• You can use --keep to bypass this.

• Does not bundle the files.
• Usually has better compression than zip. 8

Making Archives: Tar

• Bundling files together to compress is easy!

Tape Archive
tar -cf <tar_archive_name> <files_to_compress>

- Create a tar archive.

tar -xf <tar_archive_name>

- Extract all files from archive.

• Notes:
• tar is just a bundling suite, creating a single file.
• By default, it does not compress.
• Original files DO stay in tact.
• Unlike zip, you do not need the -r flag for folders :)

9

Making Archives: Tarballs

• Combine tar and a compression utility to make a tarball.

Making tarballs
tar -c(z/j)f <archive_name> <source_files>
tar -x(z/j)f <archive_name>

- (z/j) here means either z or j, not both.

- The -z flag specifies gzip as the compression method.

- YOU have to specify the file extension.

- Extension convention: .tar.gz
- Example: tar -cjf files.tar.gz files/

- The -j flag specifies bzip2 as the compression method.
- Extension convention: .tar.bz2
- Example: tar -cjf files.tar.bz2 files/

10

Pro Tip: Minimize your Keystrokes

• Extraction can usually happen automatically:
• tar -xf files.tar.gz will usually work (no -z)

• It’s the flag equivalent of the tab key.
• Ok, maybe not...but just remember it!
• This serves as a not-so-subtle reminder to obsessively hit your
tab key ;)

11

Assorted Commands

Before we can Chain...

...we need some more interesting tools to chain together!

12

Counting

• Ever wanted to show off how cool you are?

Word Count
wc [options] <file>

-l: count the number of lines.

-w: count the number of words.

-m: count the number of characters.

-c: count the number of bytes.

• Great for things like:
• Reveling in the number of lines you have programmed.
• Analyzing the verbosity of your personal statement.
• Showing people how cool you are.
• Completing homework assignments?

13

Sorting

• You don’t even need to use your brain to sort things anymore!
Sort
sort [options] <file>

- Default: sort by the ASCII code (roughly alphabetical) for the
whole line.

- Use -r to reverse the order.

- Use -n to sort by numerical order.

- Use -u to remove duplicates.

$ cat peeps.txt
Manson, Charles
Bundy, Ted
Bundy, Jed
Nevs, Sven
Nevs, Sven

$ sort -r peeps.txt
Nevs, Sven
Nevs, Sven
Manson, Charles
Bundy, Ted
Bundy, Jed

$ sort -ru peeps.txt
Nevs, Sven
Manson, Charles
Bundy, Ted
Bundy, Jed
only 1 Nevs, Sven

14

Advanced Sorting

• The sort command is quite powerful, for example you can do:

$ sort -n -k 2 -t "," <filename>

• Sorts the file numerically by using the second column,
separating by a comma as the delimiter instead of a space.

• Read the man page!

$ cat numbers.txt
02,there
04,how
01,hi
06,you
03,bob
05,are

$ sort -n -k 2 -t "," numbers.txt
01,hi
02,there
03,bob
04,how
05,are
06,you

15

Special Snowflakes

Unique
uniq [options] <file>
- No flags: discards all but one of successive identical lines.
- Use -c to prints the number of successive identical lines
next to each line.

16

Search and Replace

• Translate characters and sets (but not regular expressions)
easily!

Translate
tr [options] <set1> [set2]

- Translate or delete characters.

- Sets are strings of characters.

- By default, searches for strings matching set1 and replaces them
with set2.

- You can use POSIX and custom-defined sets (we’ll get there soon!).

• The tr command only works with streams.
• Examples to come after we learn about chaining commands in
the next section.

17

Chaining Commands

Your Environment and Variables

• There are various environment variables defined in your
environment. They are almost always all capital letters.

• You obtain their value by dereferencing them with a $.

$ echo $PWD # present working directory
$ echo $OLDPWD # print previous working directory
$ printenv # print all environment variables

• When you execute commands, they have something called an
”exit code”.

• The exit code of the last command executed is stored in the $?
environment variable.

18

What is Defined?

• The environment:
• env: displays all environment variables.
• unsetenv <name>: remove an environment variable.

• The local variables:
• set: displays all shell / local variables.
• unset <name>: remove a shell variable.

• We’ll cover these a little more when we talk about customizing
your terminal shell.

19

Exit Codes

• There are various exit codes, here are a few examples:

$ super_awesome_command
bash: super_awesome_command: command not found...
$ echo $?
127
$ echo "What is the exit code we want?"
$ echo $?
0

• The success code we want is actually 0. Refer to [3] for some
more examples.

• Remember that cat /dev/urandom trickery? You will have to
ctrl+c to kill it, what would the exit code be?

20

Executing Multiple Commands in a Row

• With exit codes, we can define some simple rules to chain
commands together:

• Always execute:

$ cmd1; cmd2 # exec cmd1 first, then cmd2

• Execute conditioned upon exit code:

$ cmd1 && cmd2 # exec cmd2 only if cmd1 returned 0
$ cmd1 || cmd2 # exec cmd2 only if cmd1 returned NOT 0

• Kind of backwards, in terms of what means continue for and,
but that was likely easier to implement since there is only one
0 and many not 0’s.

21

Piping Commands

• Bash scripting is all about combining simple commands
together to do more powerful things. This is accomplished
using the ”pipe” character.

Piping
<command1> | <command2>

- Passes the output from command1 to be the input of command2.

- Works for heaps of programs that take input and provide output to
the terminal.

22

Some Piping Examples

Piping along...
$ ls -al /bin | less
- Allows you to scroll through the long list of programs in /bin
$ history | tail -20 | head -10
- Displays the 10th - 19th previous commands from the
previous session.

$ echo * | tr ' ' '\n'
- Replaces all spaces characters with new lines.
- Execute just echo * to see the difference.

23

Redirection

• To redirect input / output streams, you can use one of >, >>, <,
or <<.

• To redirect standard output, use the > operator.
• command > file

• To redirect standard input, use the < operator.
• command < file

• To redirect standard error, use the > operator and specify the
stream number 2.

• command 2> file
• Combine streams together by using 2>&1 syntax.

• This says: send standard error to where standard output is going.
• Useful for debugging / catching error messages...
• ...or ignoring them (you will often see that sent to /dev/null).

24

Redirection Example

• Bash processes I/O redirection from left to right, allowing us to
do fun things like this:

Magic
tr -cd '0-9' < test1.txt > test2.txt

- Deletes everything but the numbers from test1.txt, then store
them in test2.txt.

- CAUTION: do not ever use the same file as output that was input.

- Example: tr -cd '0-9' < original.txt > original.txt
- You will lose all your data, you cannot read and write this way.

• Piping and Redirection are quite sophisticated, please refer to
the Wikipedia page in [4].

25

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] C. Hope.
Linux and unix chmod command help and examples.
http://www.computerhope.com/unix/uchmod.htm,
2016.

[3] T. L. D. Project.
Exit codes with special meanings.
http://tldp.org/LDP/abs/html/exitcodes.html.

26

http://www.computerhope.com/unix/uchmod.htm
http://tldp.org/LDP/abs/html/exitcodes.html

References II

[4] Wikipedia.
Redirection (computing).
https://en.wikipedia.org/wiki/Redirection_
%28computing%29.

27

https://en.wikipedia.org/wiki/Redirection_%28computing%29
https://en.wikipedia.org/wiki/Redirection_%28computing%29

	Recap on Permissions
	File Compression
	Assorted Commands
	Chaining Commands

