
04 - Package Management
CS 2043: Unix Tools and Scripting, Spring 2017 [1]

Stephen McDowell
February 1st, 2017

Cornell University

Table of contents

1. Package Management

2. System Specific Package Managers

3. Other Managers

1

Some Logistics

• Last day to add is today!
• My office hours...
• Todays slides && taking notes on em.

2

Package Management

Package Management Overview

• If you had to give one reason why Unix systems are superior to
Windows: Package Management.

• Provides the capability to install almost anything you can think
of from your terminal.

• Update to the latest version with one command.
• No more download the latest installer nonsense!

• Various tools can be installed by installing a package.
• A package contains the files and other instructions to setup a
piece of software.

• Many packages depend on each other.
• High-level package managers download packages, figure out
the dependencies for you, and deal with groups of packages.

• Low-level managers unpack individual packages, run scripts,
and get the software installed correctly.

• In general, these are ”pre-compiled binaries”: no compilation
necessary. It’s already packaged nice and neat just for you! 3

Package Managers in the Wild

• GNU/Linux:
• Two general families of packages exist: deb, and rpm
(low-level).

• High-level package managers you are likely to encounter:
• Debian/Ubuntu: apt-get.
• Some claim that aptitude is superior, but I will only cover
apt-get. They are roughly interchangeable.

• SUSE/OpenSUSE: zypper.
• Fedora: dnf (Fedora 22+).
• zypper and dnf use SAT-based dependency solvers, which
many argue is fundamentally superior. Though the dependency
resolution phase is usually not the slowest part...installing the
packages is. See [3] for more info.

• RHEL/CentOS: yum (until they adopt dnf).
• Mac OSX:

• Others exist, but the only one you should ever use is brew.
• Don’t user others (e.g. port), they are outdated / EOSL. 4

Using Package Managers

• Though the syntax for the commands are different depending
on your OS, the concepts are all the same.

• This lecture will focus on apt-get, dnf, and brew.
• The dnf commands are almost entirely interchangeable with
yum, by design.

• Note that brew is a ”special snowflake”, more on this later.
• What does your package manager give you? The ability to

• install new packages you do not have.
• remove packages you have installed.
• update* installed packages.
• update the lists to search for files / updates from.
• view dependencies of a given package.
• a whole lot more!!!

* See next slide for a potential update pitfalls.

5

A Note on update

• The update command has importantly different meanings in
different package managers.

• Some (deb) do not default to system (read linux kernel)
updates.

• Some (rpm) DO default to system updates!
• Even this is not true, it really depends on your OS:

• Fedora: default is yes.
• RHEL: default is no.
• Know your operating system, and look up what the default
behavior is.

• The difference lies somewhat in philosophy, and somewhat in
the differences between the two.

• If your program needs a specific version of the linux kernel,
you need to be very careful!

• In the end, it actually has less to do with the type of package
manager, but more to do with who is packaging things.

6

A Note on Names and their Meanings

• You may see packages of the form:
• <package>.i[3456]86 (e.g. .i386 or .i686):

• These are the 32-bit packages.
• <package>.x86_64: these are the 64-bit packages.
• <package>.noarch: these are independent of the
architecture.

• Development installations can have as many as three
packages you need to install, e.g. if you need to compile / link
against a package in a C/C++ or often times even Python, Java,
and many more languages.

• The header files are usually called something like:
• deb: usually <package>-dev
• rpm: usually <package>-devel

• The library you will need to link against:
• If applicable, lib<package> or something similar.

• Many of these may also have binaries (executables), which are
just provided by <package>. 7

Example Development Installation

• For example, if I needed to compile and link against Xrandr
(X.Org X11 libXrandr runtime library) on Fedora, I would have to
install

• libXrandr: the library.
• libXrandr-devel: the header files.
• Not including .x86_64 is OK / encouraged, your package
manager knows which one to install.

• Though in certain special cases you may need to get the
32-bit library as well.

• In this case, if I were compiling a program that links against
libXrandr, but I want to release a pre-compiled 32bit library, it
must be installed in order for me to link against it.

• The deb versions should be similarly named, but just use the
search functionality of find the right names.

• This concept has no meaning for brew, since it compiles
everything. 8

System Specific Package Managers

Debian / Ubuntu Package Management

• Installing and uninstalling:
• Install a package:
apt-get install <pkg1> <pkg2> ... <pkgN>

• Remove a package:
apt-get remove <pkg1> <pkg2> ... <pkgN>

• Only one pkg required, but can specify many.
• ”Group” packages are available, but still the same command.

• Updating components:
• Update lists of packages available: apt-get update.

• No arguments, it updates the whole list (even if you give args).
• Updating currently installed packages: apt-get upgrade.

• If you instead specify a package name, it will only update /
upgrade that package.

• Update core (incl. kernel): apt-get dist-upgrade.
• Searching for packages:

• Different command: apt-cache search <pkg>
9

RHEL / Fedora (yum and dnf)

• Installing and uninstalling:
• Install a package:
dnf install <pkg1> <pkg2> ... <pkgN>

• Remove a package:
dnf remove <pkg1> <pkg2> ... <pkgN>

• Only one pkg required, but can specify many.
• ”Group” packages are available, but different command:
dnf groupinstall 'Package Group Name'

• Updating components:
• Update EVERYTHING dnf upgrade.
• update exists, but is essentially upgrade.

• Specify a package name to only upgrade that package.
• Updating repository lists: dnf check-update

• Searching for packages:
• Same command: dnf search <pkg>

10

dnf: Cautionary Tales

• WARNING: if you install package Y, which installs X as a
dependency, and later remove Y

• By default, X will be removed!
• Refer to [4] for workarounds.
• Generally, it’s impossible to know you needed to mark until its
too late.

• Solution?
• Basically, pay attention to your package manager.
• It gets removed because nothing explicitly depends on it.
• So one day you may realize ”OH NO! I’m missing package X”...
• ...so just dnf install X.

• So while mark is available, personally I don’t use it.
• Sad face, I know. Just the way of the world.

11

OSX Package Management: Install brew on your own

• Sitting in class right now with a Mac?
• WAIT UNTIL LATER TO FOLLOW THESE. You will want to make
sure you do not have to interrupt the process.
1. Make sure you have the ”Command Line Tools” installed.

• Instructions are on the First Things First Config Page
2. Visit http://brew.sh/
3. Copy-paste the given instructions in the terminal as a regular
user (not root!).

5. VERY IMPORTANT: READ WHAT THE OUTPUT IS!!!! It will tell you to
do things, and you have to do them.
Specifically:
”You should run ‘brew doctor’ *before* you install anything.”

12

https://cs2043-sp17.github.io/configurations.html
http://brew.sh/

OSX: Using brew

• Installing and uninstalling:
• Install a formula:
brew install <fmla1> <fmla2> ... <fmla2>

• Remove a formula:
brew uninstall <fmla1> <fmla2> ... <fmlaN>

• Only one fmla required, but can specify many.
• ”Group” packages have no meaning in brew.

• Updating components:
• Update brew, all taps, and installed formulae listings. This does
not update the actual software you have installed with brew,
just the definitions (more on next slide): brew update.

• Update just installed formulae: brew upgrade.
• Specify a formula name to only upgrade that formula.

• Searching for packages:
• Same command: brew search <formula>

13

OSX: One of These Kids is Not Like the Others (Part I)

• Safe: confines itself (by default) in /usr/local/Cellar:
• No sudo, plays nicely with OSX (e.g. Applications, python3).
• Non-linking by default. If a conflict is detected, it will tell you.
• Really important to read what brew tells you!!!

• brew is modular. There is a main list of repositories, but there
are also additional taps:

• A tap is effectively another repository list, like what a .rpm or
.deb would give you in linux.

• Common taps people use:
• brew tap homebrew/science
Various ”scientific computing” tools, e.g. opencv.

• brew tap caskroom/cask
Install .app applications! Safe: installs in the ”Cellar”, symlinks
to ~/Applications, but now these update with brew all on
their own!
E.g. brew cask install vlc

14

OSX: One of These Kids is Not Like the Others (Part II)

• brew installs formulas.
• A formula is not a pre-compiled binary, it is a ruby script that
provides rules for where to download something from / how to
compile it.

• You download a bottle that gets poured: download source
and compile (ish).

• Though more time consuming, can be quite convenient!
• brew options opencv
• brew install --with-cuda --c++11 opencv
• It really really really is magical. No need to understand the
opencv build flags, because the authors of the brew formula are
kind and wonderful people.

• brew reinstall --with-missed-option formula
• Of course, there is a whole lot more that brew does, just like
the other package managers.

15

OSX: One of These Kids is Not Like the Others (Part III)

• You REALLY need to pay attention to brew and what it says.
Seriously.

• Example: after installing opencv, it tells me:

==> Caveats
Python modules have been installed and Homebrew's site-packages is not
in your Python sys.path, so you will not be able to import the modules
this formula installed. If you plan to develop with these modules,
please run:
mkdir -p /Users/sven/.local/lib/python2.7/site-packages
echo 'import site; site.addsitedir("/usr/local/lib/python2.7/site-packages")' >> \
/Users/sven/.local/lib/python2.7/site-packages/homebrew.pth

(continued onto newline so you can read, it gives you copy-paste format!)

• Obviously I want to use opencv with Python, so I am going to
follow what brew tells me to do.

• If it may cause problems, it will tell you what the problems
might be.

16

Less Common Package Management Operations

• Sometimes when dependencies are installed behind the
scenes, and you no longer need them, you will want to get rid
of them.

• apt-get autoremove
• dnf autoremove
• brew doctor

• View the list of repositories being checked:
• apt-cache policy (well, sort of...apt doesn’t have it)
• dnf repolist [enabled|disabled|all]

• Some repositories for dnf are disabled by default (with good
reason). Usually you want to just
dnf enablerepo=<name> install <thing>
e.g. if you have rawhide (development branch for fedora).

• brew tap

17

Other Managers

Like What?

• There are so many package managers out there for different
things, too many to list them all!

• Ruby: gem
• Anaconda Python: conda
• Python: pip
• Python: easy_install (but really, just use pip)
• Python3: pip3
• LATEX: tlmgr (uses the CTAN database)
• Perl: cpan
• Sublime Text has its own package manager: Package Control.
• Many many others...

18

Like How?

• Some notes and warnings about Python package management.
• Notes:

• If you install something with pip, and try to use it with Python3,
it will not work. You have to also install it with pip3.

• OSX Specifically: advise only using brew or Anaconda Python.
The system Python can get really damaged if you modify it, you
are better off leaving it alone.

• So even if you want to use python2 on Mac, I strongly
encourage you to install it with brew.

• Warnings:
• Don’t mix easy_install and pip. Choose one, stick with it.

• But the internet told me if I want pip on Mac, I should
easy_install pip

• NO! Because this pip will modify your system python, USE BREW.
• Don’t mix pip with conda. If you have Anaconda python, just
stick to using conda.

19

Like thefuck

• Let’s install something!

$ pip install thefuck

• What does it do? Justify your emotions when you get
something wrong...

• Checkout the GitHub page in [2]

20

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] V. Iakovlev.
Magnificent app which corrects your previous console
command.
https://github.com/nvbn/thefuck.

[3] Linux.com.
What you need to know about fedora’s switch from yum to
dnf.
https://www.linux.com/learn/tutorials/
838176-what-you-need-to-know-about-fedoras-switch-from-yum-to-dnf.

21

https://github.com/nvbn/thefuck
https://www.linux.com/learn/tutorials/838176-what-you-need-to-know-about-fedoras-switch-from-yum-to-dnf
https://www.linux.com/learn/tutorials/838176-what-you-need-to-know-about-fedoras-switch-from-yum-to-dnf

References II

[4] Reddit.com.
Dnf remove package, keep dependencies??
https:
//www.reddit.com/r/Fedora/comments/3pqrv9/
dnf_remove_package_keep_dependencies/.

22

https://www.reddit.com/r/Fedora/comments/3pqrv9/dnf_remove_package_keep_dependencies/
https://www.reddit.com/r/Fedora/comments/3pqrv9/dnf_remove_package_keep_dependencies/
https://www.reddit.com/r/Fedora/comments/3pqrv9/dnf_remove_package_keep_dependencies/

	Package Management
	System Specific Package Managers
	Other Managers

