
03 - Manipulating Files and Using Git
CS 2043: Unix Tools and Scripting, Spring 2017 [1]

Stephen McDowell
January 30th, 2017

Cornell University



Table of contents

1. Working with Files

2. Types of Files and Usages

3. Let’s Git Started

4. Demo Time!

1



Some Logistics

• Last day to add is Wednesday 2/1.
• On moving forward independently, and using sudo.

• I strongly advise taking a snapshot of your VM.

2



Working with Files



Users and Groups

Like most OS’s, Unix allows multiple people to use the same
machine at once. The question: who has access to what?

• Access to files depends on the users’ account.
• All accounts are presided over by the Superuser, or root
account.

• Each user has absolute control over any files they own, which
can only be superseded by root.

• Files can also be owned by a group, allowing more users to
have access.

3



File Ownership

• You can discern who owns a file many ways, the most
immediate being ls -l

Permissions with ls
$ ls -l Makefile
-rw-rw-r--. 1 sven users 4.9K Jan 31 04:42 Makefile

sven # the user
users # the group

• The third column is the user, and the fourth column is the
group.

4



What is this RWX Nonsense?

• R = read, W = write, X = execute.
• rwxrwxrwx

• User permissions.
• Group permissions.
• Other permissions (a.k.a. neither the owner, nor a member of
the group).

• Directory permissions begin with a d instead of a -.

5



An example

What would the permissions -rwxr----- mean?

• It is a file.
• User can read and write to the file, as well as execute it.
• Group members are allowed to read the file, but cannot write to
or execute.

• Other cannot do anything with it.

6



Changing Permissions

Change Mode
chmod <mode> <file>
- Changes file / directory permissions to <mode>.
- The format of <mode> is a combination of three fields:
- Who is affected: a combination of u, g, o, or a (all).
- Use a + to add permissions, and a - to remove.
- Specify type of permission: any combination of r, w, x.

- Or you can specify mode in octal: user, then group, then
other.
- e.g. 777 means user=7, group=7, other=7 permissions.

The octal version can be confusing, but will save you time.
Excellent resource in [2].

7



Changing Ownership

Changing the group

Change Group
chgrp group <file>
- Changes the group ownership of <file> to group.

As the super user, you can change who owns a file:

Change Ownership
chown user:group <file>
- Changes the ownership of <file>.
- The group is optional.
- The -R flag is useful for recursively modifying everything in a
directory.

8



File Ownership, Alternate

If you are like me, you often forget which column is which in
ls -l...
Status of a file or filesystem
stat [opts] <filename>
- Gives you a wealth of information, generally more than you
will every actually need.

- Uid is the user, Gid is the group.
- BSD/OSX: use stat -x for standard display of this command.

- Can be useful if you want to mimic file permissions you don’t
know.
- Human readable: --format=%A, e.g. -rw-rw-r--
- BSD/OSX: -f %Sp is used instead.

- Octal: --format=%a (great for chmod), e.g. 664
- BSD/OSX: -f %A is used instead. 9



Platform Notes

• Convenience flag for chown and chmod on non-BSD Unix:

$ chmod --reference=<src> <dest>

• Set the permissions of dest to the permissions of src!
• BSD/OSX users: --reference does not exist, you will have to
execute two commands.

$ chmod $(stat -f %A <src>) <dest>

• The command inside of $(...) gets evaluated before chmod.
• You may see backticks: `stat -f %A <src>`, this is the old
way, and is no longer supported.

• The stat command performs a little differently on BSD/OSX
by default. Read the man page. 10



Types of Files and Usages



Plain Files

Plain text files are human-readable, and are usually used for
things like:

• Documentation,
• Application settings,
• Source code,
• Logs, and
• Anything you may want to read via the terminal (e.g.
README.txt).

11



Binary Files

Binary files are not human-readable. They are written in the
language your computer prefers.

• Executables,
• Libraries,
• Media files,
• Archives (.zip, etc), and many more.

12



Reading Files Without Opening
Concatenate
cat <filename>
- Prints the contents of the file to the terminal window
cat <file1> <file2>
- Prints file1 first, then file2.
more
more <filename>
- Scroll through one page at a time.
- Program exits when end is reached.

less
less <filename>
- Scroll pages or lines (mouse wheel, space bar, and arrows).
- Program does not exit when end is reached. 13



Beginning and End

Long files can be a pain with the previous tools.

Head and Tail of Input
head -[numlines] <filename>
tail -[numlines] <filename>

- Prints the first / last numlines of the file.

- Default is 10 lines.

14



Not Really a File...YET

You can talk to yourself in the terminal too!

Echo
echo <text>

- Prints the input string to the standard output (the terminal).

- We will soon learn how to use echo to put things into files,
append to files, etc.

15



Let’s Git Started



What is git?

• git is a decentralized version control system.
• Ever used ”track changes” for a word document? It’s basically
the same thing.

• Except for exceptionally more advanced, and you don’t have to
pay for it.

• Basically, it enables you to save changes as you go to your
code.

• As you make these changes, if at any point in time you discover
your code is ”broken”, you can revert back in time!

• Of course, if you haven’t been ”saving” frequently, you have less
to work with.

• Mantra: commit early and often.

16



git Terminology

• The ”document” is called a repository (repo).
• The initial download is called clone.

• The location where files are being stored on the server is the
remote.

• We’ll refer to the copies on your computer as the local, or
sometimes client.

• The act of ”saving” is commit.
• Just because you saved it locally doesn’t mean anything for the
remote.

• To publish changes to the remote, you push.
• When the version you have is different than what is online, this
can produce a conflict - if git cannot figure out what to do, it
will tell you.

• To acquire updates from the remote, you need to pull.
17



On the Board

What does it actually look like?

18



Teaser: Example Scenario

• Suppose you (A), and your best friend B are working in the
same repo.

• You both clone the repository at the same time, and both
make different changes to the same file.

• B hacks your internet and takes you offline, and pushes their
changes to the remote.

• You get internet back, and go to push. What happens?
• The remote will reject your push, and force you to merge in
the changes from B first.

• Basically, git can get complicated quickly.
• HOWEVER! You must work independently in this class, so you
won’t have nearly as many problems ;)

19



Demo Time!



Our first in class demo

• Ok, lets not get too carried away with git.
• The first thing you’ll want to do is learn how to download a
repo.

$ git clone https://github.com/cs2043-sp17/lecture-demos.git

• ... lets walk through the demo ...
• Hey a solution! To get it now:

$ git pull

20



References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] C. Hope.
Linux and unix chmod command help and examples.
http://www.computerhope.com/unix/uchmod.htm,
2016.

21

http://www.computerhope.com/unix/uchmod.htm

	Working with Files
	Types of Files and Usages
	Let's Git Started
	Demo Time!

