
02 - The Unix File System
CS 2043: Unix Tools and Scripting, Spring 2017 [1]

Stephen McDowell
January 27th, 2017

Cornell University



Table of contents

1. Unix Filesystem Overview

2. Basic Navigational Commands

3. File and Folder Manipulation

4. Flags & Command Clarifaction

1



Some Logistics

• Virtual Machines are almost ready, need to update the videos.

• Assuming minimal errors recording, afternoon - dinner time.

• Still on the fence about taking the class?
• Moral obligation: decide now, many others want to enroll.

2



Notation

• Commands will be shown on slides using teletype text.

Introducing new commands
some-command [opt1] [opt2]

New commands will be introduced in block boxes like this one,
sometimes including common flags or warnings.

• To execute some-command, just type its name into the shell
and press return / enter.

• $ in code-blocks indicate a new command being entered.

$ first-command
output of first-command (where applicable)
$ second-command
output of second-command (where applicable)

3



Unix Filesystem Overview



The Unix Filesystem

• Unlike Windows, UNIX has a single global ”root” directory
(instead of a root directory for each disk or volume).

• The root directory is just /

• All files and directories are case sensitive.
• hello.txt != hElLo.TxT

• Directories are separated by / instead of \ in Unix.
• UNIX: /home/sven/lemurs
• Windows: E:\Documents\lemurs

• Hidden files and folders begin with a ”.”
• e.g. .git/ (a hidden directory).

• Example: my home directory.

4



What’s Where?

• /dev: Hardware devices, like your hard drive, USB devices.
• /lib: Stores libraries, along with /usr/lib,
/usr/local/lib, etc.

• /mnt: Frequently used to mount disk drives.
• /usr: Mostly user-installed programs and amenities.
• /etc: System-wide settings.

5



What’s Where: Programs Edition

Programs are usually installed in one of the ”binaries”
directories:

• /bin: System programs.
• /usr/bin: Most user programs.
• /usr/local/bin: A few other user programs.

6



Personal Files

• Your personal files are in your home directory (and its
subdirectories), which is usually* located at

Linux Mac
/home/username /Users/username

• There is also a built-in alias for it: ~
• For example, the Desktop for the user sven is located at

Linux Mac
/home/sven/Desktop /Users/sven/Desktop

~/Desktop ~/Desktop

7



Basic Navigational Commands



Where am I?

• Most shells default to using the current path in their prompt. If
not, you can find out where you are with

Print working directory
pwd

- Prints the ”full” path of the current directory.

- Handy on minimalist systems when you get lost.

- Can be used in scripts.

• Note that if you have a path with symbolic links, you need to
use the -P flag.

8



What’s here?

• Knowing where you are is useful, but understanding what else
is there is too...

The list command
ls

- Lists directory contents (including subdirectories).

- Works like the dir command in Windows.

- The -l flag lists detailed file / directory information (we’ll learn
more about flags later).

- Use -a to list hidden files.

9



Ok lets go!

• Moving around is as easy as

Changing directories
cd [directory name]

- Changes directory to [directory name].

- If not given a destination defaults to the user’s home directory.

- You can specify both absolute and relative paths.

- If you do not specify a directory, the ~ (home) directory is
assumed.

• Absolute paths start at / (the global root).
• e.g. cd /home/sven/Desktop

• Relative paths start at the current directory.
• e.g. cd Desktop, if you were already at /home/sven

10



Relative Path Shortcuts

• Shortcuts

~ current user’s home directory
. the current directory (this is actually useful...)
.. the parent directory of the current directory
- for cd command, return to previous working directory

• An example: starting in /usr/local/src

$ cd # now at /home/sven
$ cd - # now at /usr/local/src
$ cd .. # now at /usr/local

11



File and Folder Manipulation



Creating a new File

• The easiest way to create an empty file is using

touch
touch [flags] <file>

- Adjusts the timestamp of the specified file.

- With no flags uses the current date and time.

- If the file does not exist, touch creates it.

• File extensions (.txt, .c, .py, etc) often don’t matter in Unix.
Using touch to create a file results in a blank plain-text file
(so you don’t necessarily have to add .txt to it).

12



Creating a new Directory

• No magic here...

Make directory
mkdir [flags] <dir1> <dir2> <...> <dirN>
- Can use relative or absolute paths.

- a.k.a. you are not restricted to making directories in the current
directory only.

- Need to specify at least one directory name.

- Can specify multiple, separated by spaces.

- The -p flag is commonly used in scripts:
- Makes all parent directories if they do not exist.
- Convenient because if the directory exists, mkdir will not fail.

13



File Deletion

• Warning: once you delete a file (from the command line) there
is no easy way to recover the file.

Remove File
rm [flags] <filename>

- Removes the file <filename>.

- Remove multiple files with wildcards (more on this later).

- Remove every file in the current directory: rm *
- Remove every .jpg file in the current directory: rm *.jpg

- Prompt before deletion: rm -i <filename>

14



Deleting Directories

• By default, rm cannot remove directories. Instead we use...

Remove directory
rmdir [flags] <directory>

- Removes an empty directory.

- Throws an error if the directory is not empty.

- You are encouraged to use this command: failing on non-empty
can and will save you!

• To delete a directory and all its subdirectories, we pass rm the
flag -r (for recursive), e.g. rm -r /home/sven/oldstuff

15



Copy That!

Copy
cp [flags] <file> <destination>
- Copies from one location to another.
- To copy multiple files, use wildcards (such as *).
- To copy a complete directory: cp -r <src> <dest>

16



Move it!

• Unlike the cp command, the move command automatically
recurses for directories.

• Think of the implication of if it did not...

Move
mv [flags] <source> <destination>

- Moves a file or directory from one place to another.

- Also used for renaming, just move from <oldname> to
<newname>.
- E.g. mv badFolderName correctName

17



Recap

ls list directory contents
cd change directory
pwd print working directory
rm remove file

rmdir remove directory
cp copy file
mv move file

18



Flags & Command Clarifaction



Flags and Options

• Most commands take flags and optional arguments.
• These come in two general forms:

• Switches (no argument required), and
• Argument specifiers (for lack of a better name).

• When specifying flags for a given command, keep in mind:
• Flags modify the behavior of the command / how it executes.
• Some flags take precedence over others, and some flags you
specify can implicitly pass additional flags to the command.

19



Flags and Options: A bad Analogy

• If you think of a command as a computer, you could think of
the flags as the different hardware components installed. Let’s
say that in this case a hard drive is a flag.

• The computer shipped to you with a CPU, motherboard, hard
drive, etc and installed on that hard drive was the original
operating system (say Windows). When you start it, the
computer was executed with the Windows flag.

• Now, you remove the original hard drive and insert another
hard drive that has a different OS installed (say Fedora). Then
you boot your computer, only this time you ended up passing
the Fedora flag.

• Nothing about the other components of the computer
changed (it’s just a bunch of electricity being routed around),
but the behavior changed because of the flag you passed.

20



Flags and Options: Formats

A flag that is

• One letter is specified with a single dash (-a).
• More than one letter is specified with two dashes (--all).
• The reason is because of how switches can be combined (next
page).

21



Flags and Options: Switches

Switches take no arguments, and can be specified in a couple
of different ways. Switches are usually one letter, and multiple
letter switches usually have a one letter alias (the ls
command has --all aliased to -a).

• One option:
• ls -a
• ls --all

• Two options:
• ls -l -Q

• Two options:
• ls -lQ

• Usually applied from left to right in terms of operator
precedence, but not always:

• This is up to the developer of the tool.
• rm -fi <file> ⇒ prompts
• rm -if <file> ⇒ does not prompt 22



Flags and Options: Argument Specifiers

• These flags expect an input, and you will encounter two
general kinds.

• The --argument="value" format, where the = and quotes
are needed if value is more than one word.

• Yes: ls --hide="Desktop" ~/
• Yes: ls --hide=Desktop ~/

• one word, no quotes necessary
• No: ls --hide = "Desktop" ~/

• spaces by the = will be misinterpreted (it used = as the hide
value...)

• The --argument value format, with a space after the
argument. Quote rules same as above.

• ls --hide "Desktop" ~/
• ls --hide Desktop ~/

• Note: The example I gave you was using the same --hide in both formats, but not all commands will accept both.

Advise --argument="value" format for higher success rates. 23



Flags and Options: Conventions, Warnings

Generally, you should always specify the flags before the
arguments. In this example, the flag is -l and ~/Desktop/ is
the argument.

• ls -l ~/Desktop/ and ls ~/Desktop/ -l both work
• there exist scenarios in which flags after arguments do not get
processed

There is a special sequence -- that signals the end of the
options. I will use another flag to demonstrate:

• ls -l -a ~/Desktop/ ⇒ executes as expected
• ls -l -- -a ~/Desktop/ ⇒ only used -l

• ”ls: cannot access -a: No such file or directory”

• -a was treated as an argument, and there is no -a directory
(for me)

24



Flags and Options: Conventions, Warnings (cont)

The special sequence -- that signals the end of the options is
often most useful if you need to do something special.
Suppose I wanted to make the folder -a on my Desktop.

$ cd ~/Desktop # for demonstration purpose
$ mkdir -a # fails: invalid option -- 'a'
$ mkdir -- -a # success! (ls to confirm)
$ rmdir -a # fails: invalid option -- 'a'
$ rmdir -- -a # success! (ls to confirm)

This trick can be useful in many scenarios, and generally arises
when you need to work with special characters of some sort.

25



Your new best friend

How do I know what the flags / options for all of these
commands are?

The manual command
man <command_name>
- Loads the manual (manpage) for the specified command.
- Unlike google, manpages are system-specific.
- Usually very comprehensive. Sometimes too comprehensive.
- Type /<keyword> to search.
- The n key jumps through the search results.

Search example on next page if that was confusing. Intended
for side-by-side follow-along.

26



Man oh man

$ man man # you now have the manual loaded
$ /useful # type /useful, then hit enter
############# [first result highlighted]
$ n # followed by enter
############# [next result highlighted]

Note that there are subtle differences between options on
different systems. For example, ls -B:

• BSD/OSX: Force printing of non-printable characters in file
names as \xxx, where xxx is the numeric value of the
character in octal.

• Fedora, Ubuntu: do not list implied entries ending with ~
• In these OS’s, files ending with ~ are temporary backup files
that certain programs (e.g. some text-editors) generate. 27



References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

28


	Unix Filesystem Overview
	Basic Navigational Commands
	File and Folder Manipulation
	Flags & Command Clarifaction

